Medical and Dental Consultantsí Association of Nigeria
Home - About us - Editorial board - Search - Ahead of print - Current issue - Archives - Submit article - Instructions - Subscribe - Advertise - Contacts - Login 
  Users Online: 5321   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
 
ORIGINAL ARTICLE
Year : 2016  |  Volume : 19  |  Issue : 6  |  Page : 730-736

Measuring the resistance of different substructure materials by sticking them to dentine with two different resin cements in vitro


1 Department of Prosthodontics, Diyarbakir Oral and Dental Health Center, Diyarbakir, Turkey
2 Department of Prosthodontics, Faculty of Dentistry, Dicle University, Diyarbakir, Turkey
3 Department of Endodontics, Faculty of Dentistry, Dicle University, Diyarbakir, Turkey
4 Department of Prosthodontics, Faculty of Dentistry, Firat University, Diyarbakir, Turkey
5 Department of Prosthodontics, Private Practice, Diyarbakir, Turkey

Correspondence Address:
Dr. S Guven
Department of Prosthodontics, Faculty of Dentistry, Dicle University, Diyarbakir
Turkey
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1119-3077.164339

Rights and Permissions

Introduction: The resistance of three different substructure materials – metal (Cr-Co), zirconium (Zr), and ceramics (IPS Empress II) – was measured by sticking them to dentine with two different resin cements, a dual-cure resin cement (Panavia F 2.0 Light) and a self-adhesive resin cement (BisCem). Materials and Methods: In an in vitro study, 72 central upper front teeth were selected with no decay or apparent breakage and with complete development, removed for periodontal reasons. Labial and incisal surfaces of all teeth were prepared. Molds were obtained to prepare metal (Co-Cr), Zr, and ceramic (IPS Empress II) blocks for use in the study. The compressive strengths of the obtained material infrastructures were examined after thermal cycle processing by performing cementation to the teeth with two different cements. The data obtained were analyzed statistically. The Mann–Whitney U-test was used for comparisons of the groups with two options, and Kruskal–Wallis variance analysis was used to compare more than two groups. P<0.05 were considered statistically significant. Results: While the highest result between samples was 117.86 ± 47.94 N in the dual-cure (Panavia)-ceramic group, the lowest value was observed at 6.53 ± 3.12 N in the self-adhesive (BisCem)-metal group. There was a significant difference between dual-cure (Panavia) and self-adhesive (BisCem) groups. Conclusion: In this study, we measured the bond strength; our most durable resistance groups were found to be, in order, Panavia-ceramics >Panavia-metal >Panavia-Zr >self-adhesive-ceramics >self-adhesive-Zr >and self-adhesive-metal.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1384    
    Printed48    
    Emailed0    
    PDF Downloaded240    
    Comments [Add]    

Recommend this journal