Medical and Dental Consultantsí Association of Nigeria
Home - About us - Editorial board - Search - Ahead of print - Current issue - Archives - Submit article - Instructions - Subscribe - Advertise - Contacts - Login 
  Users Online: 230   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
 
ORIGINAL ARTICLE
Year : 2017  |  Volume : 20  |  Issue : 12  |  Page : 1644-1650

Influence of blood contamination during multimode adhesive application on the microtensile bond strength to dentin


1 Department of Pediatric Dentistry, Faculty of Dentistry, Izmir Katip Celebi University, Cigli, Izmir, Turkey
2 Department of Restorative Dentistry, Faculty of Dentistry, Izmir Katip Celebi University, Cigli, Izmir, Turkey

Correspondence Address:
Dr. E Kucukyilmaz
Assistant Professor, Department of Pediatric Dentistry, Faculty of Dentistry, Izmir Katip Celebi University, Cigli, Izmir
Turkey
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1119-3077.224127

Rights and Permissions

Objectives: The present study evaluated the effects of blood contamination performed at different steps of bonding on the microtensile bond strength (μTBS) of multimode adhesives to dentin when using the self-etch approach. Materials and Methods: Seventy-five molars were randomly assigned to three adhesive groups comprising 25 specimens each: two multimode adhesives [Single Bond Universal (SBU) and All-Bond Universal (ABU)] and a conventional one-step self-etch adhesive [Clearfil S3 Bond Plus (CSBP)]. Each group was subdivided as follows: (1) uncontaminated (control): bonding application/light curing as a positive control; (2) contamination-1 (cont-1): bonding application/light curing/blood contamination/dry as a negative control; (3) contamination-2 (cont-2): bonding application/light curing/blood contamination/rinse/dry; (4) contamination-3 (cont-3): bonding application/blood contamination/dry/bonding re-application/light curing; and (5) contamination-4 (cont-4): bonding application/blood contamination/rinse/dry/bonding re-application/light curing. Dentin specimens were prepared for μTBS testing after the composite resin application. Data were analyzed with two-way ANOVA and post-hoc tests (α = 0.05). Results: μTBS values were similar in cont-3 groups, and ABU/cont-4 and corresponding control groups, but were significantly lower in the other groups than in their control groups (P < 0.05). Cont-1 groups showed the lowest μTBS values (P < 0.05). Conclusions: Neither decontamination method prevented the decrease in μTBS when contamination occurred after light curing. Drying the blood contaminants and reapplying the adhesive may regain the dentin adhesion when contamination occurs before light curing. Alternatively, rinsing and drying contaminants followed by adhesive re-application may be effective depending on adhesive type.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1042    
    Printed36    
    Emailed0    
    PDF Downloaded260    
    Comments [Add]    

Recommend this journal