Medical and Dental Consultantsí Association of Nigeria
Home - About us - Editorial board - Search - Ahead of print - Current issue - Archives - Submit article - Instructions - Subscribe - Advertise - Contacts - Login 
  Users Online: 1101   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
 
ORIGINAL ARTICLE
Year : 2019  |  Volume : 22  |  Issue : 12  |  Page : 1654-1661

Antimicrobial photodynamic therapy (light source; methylene blue; titanium dioxide): Bactericidal effects analysis on oral plaque bacteria: An in vitro study


1 Division of Periodontics, Department of Periodontics and Community Dental Sciences, College of Dentistry, Abha, Asir, KSA
2 Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Asir, KSA
3 Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Asir, KSA

Correspondence Address:
Dr. M A Javali
Division of Periodontics, Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha, Asir
KSA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/njcp.njcp_189_19

Rights and Permissions

Background: Incomplete eradication of plaque bacteria from the plaque retentive sites and the emerging problem of antibiotic resistance led the scientific community to explore new antimicrobial strategies for improved results and shun antibiotic resistance. Objective: The purpose of this in-vitro study was to evaluate the antimicrobial effect of a novel light based therapy and to assess the susceptibility of oral plaque bacteria to light based technologies with and without photosensitizers. Materials and Methods: Four oral plaque bacterial strains were isolated from the dental plaque sample collected from the patients and exposed to various light based technologies and photodynamic therapy (PDT) with and without photosensitizers. The cultures were analysed for viable colony forming unit (CFU) counts. One-way analysis of variance was used to statistically analyse differences and the Student-Newman-Keuls method to perform multiple comparison procedures. Results: All groups showed remarkable reduction in the CFUs as compared to control group with use of light based technologies and PDT in this study. The difference of antimicrobial effect between all tested groups either with light based technologies and PDT with control group showed significant reduction in CFUs. Conclusions: From the results of this study, we concluded that light based technologies and PDT could be a valuable alternative therapy to mechanical debridement in the prevention of growth and recolonisation of oral plaque bacteria.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed162    
    Printed2    
    Emailed0    
    PDF Downloaded57    
    Comments [Add]    

Recommend this journal