Medical and Dental Consultantsí Association of Nigeria
Home - About us - Editorial board - Search - Ahead of print - Current issue - Archives - Submit article - Instructions - Subscribe - Advertise - Contacts - Login 
  Users Online: 5226   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
 
ORIGINAL ARTICLE
Year : 2020  |  Volume : 23  |  Issue : 7  |  Page : 957-964

Effect of surface characteristic of different restorative materials containing glass ionomer on Streptococcus mutans biofilm


1 Department of Restorative Dentistry, Faculty of Dentistry, Biruni University, Istanbul, Turkey
2 Department of Restorative Dentistry, Faculty of Dentistry, Suleyman Demirel University, Isparta, Turkey
3 Department of Food Engineering, Faculty of Engineering, Suleyman Demirel University, Isparta, Turkey
4 Department of Biostatistics and Medical Informatics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey

Correspondence Address:
Dr. O K Hepdeniz
Department of Restorative Dentistry, Faculty of Dentistry, Suleyman Demirel University, Isparta
Turkey
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/njcp.njcp_538_19

Rights and Permissions

Aim: The aims of this study were to evaluate the surface morphology and surface roughness of restorative materials containing glass ionomer, analyze Streptococcus mutans biofilm formation on the surface of materials, and determine the correlation between surface roughness and biofilm. Materials and Methods: Four restorative materials: resin-modified glass ionomer; giomer; amalgomer; and glass carbomer were used and for each material, 6 mm in diameter and 2 mm in thickness disc-shaped specimens were prepared to evaluate the surface morphology (n = 3), surface roughness (n = 16), and biofilm (n = 20). Surface morphology was analyzed with a scanning electron microscope. Surface roughness was evaluated via an atomic force microscope. The biofilm was evaluated by counting the colony-forming units. Surface roughness measurements were evaluated using a one-way analysis of variance and Tukey HSD test. Biofilm parameters were analyzed using the Kruskal-Wallis H and Mann-Whitney U test. Pearson's correlation test was used to determine the correlation between surface roughness and biofilm. Results: While the highest roughness values were obtained for amalgomer and glass carbomer, the lowest roughness values belonged to giomer and resin-modified glass ionomer. Statistically significant differences in the number of adherent bacteria were observed between the materials only on day 1. No statistically significant correlation was determined between surface roughness and biofilm. Conclusions: The resin content and small filler particle size of material positively affect surface roughness. However, there is no direct relationship between surface roughness and biofilm.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed147    
    Printed3    
    Emailed0    
    PDF Downloaded70    
    Comments [Add]    

Recommend this journal