Medical and Dental Consultantsí Association of Nigeria
Home - About us - Editorial board - Search - Ahead of print - Current issue - Archives - Submit article - Instructions - Subscribe - Advertise - Contacts - Login 
  Users Online: 307   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
Year : 2017  |  Volume : 20  |  Issue : 11  |  Page : 1368-1403

Microarray analysis of the gene expression profile in triethylene glycol dimethacrylate-treated human dental pulp cells

1 Department of Medical Genetics, Gulhane Military Medical Academy, Ankara 06018, Turkey
2 Department of Restorative Dentistry and Endodontics, Gulhane Military Medical Academy, Ankara 06018, Turkey
3 Department of Medical and Cancer Research Center, Gulhane Military Medical Academy, Ankara 06018, Turkey
4 Department of Medical and Cancer Research Center; Department of Haematology, Gulhane Military Medical Academy, Ankara 06018, Turkey

Correspondence Address:
Dr. Z Ö Torun
Department of Restorative Dentistry and Endodontics, Gulhane Military Medical Academy, Etlik, Ankara 06018
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/1119-3077.181353

Rights and Permissions

Objective: Triethylene glycol dimethacrylate (TEGDMA) is an important resin monomer commonly used in the structure of dental restorative materials. Recent studies have shown that unpolymerized resin monomers may be released into the oral environment and cause harmful biological effects. We investigated changes in the gene expression profiles of TEGDMA-treated human dental pulp cells (hDPCs) following short- (1-day) and long-term (7-days) exposure. Materials and Methods: HDPCs were exposed to a noncytotoxic concentration of TEGDMA, and gene expression profiles were evaluated by microarray analysis. The results were confirmed by quantitative reverse-transcriptase PCR (qRT PCR). Results: In total, 1282 and 1319 genes (up- or down-regulated) were differentially expressed compared with control group after the 1- and 7-day incubation periods, respectively. Biological ontology-based analyses revealed that metabolic, cellular, and developmental processes constituted the largest groups of biological functional processes. qRT-PCR analysis on bone morphogenetic protein-2 (BMP-2), BMP-4, secreted protein, acidic, cysteine-rich, collagen type I alpha 1, oxidative stress-induced growth inhibitor 1, MMP3, interleukin-6, and heme oxygenase-1 genes confirmed the changes in expression observed in the microarray analysis. Conclusions: Our results suggest that TEGDMA can change the many functions of hDPCs through large changes in gene expression levels and complex interactions with different signaling pathways.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded341    
    Comments [Add]    
    Cited by others 1    

Recommend this journal